n-handling mechanism. An exception is an
de sequence at run time. In other Words

“n exception is a_run-time error. In computer languages that do not support

- N hecked and handled manually—typically thrg,
exception handling, errqrs must be checked and. e e <Y throygh
the use of error codes, and so on. This approach.is as cumberso?j_e as it is ‘l—fou_b_l‘iﬁgr_n_g_

ava’s exception h ids these problems and, in the process, brings run-time
error management into the object-oriented world,. f g mmn L
For the most part, exception handling has not changed since the original versjgp

of Java. However, Java 2, version 1.4 has added a new subsystem called the chained
exception facility. This feature is described near the end of this chepter. o

abnormal condition that arises in aco

This chapter examines Java’s exceptio

Ay

Exception-Handling Fundamentals

A Java exception is an object that describes an exceptional (that is, error) condition

that has occurred in a piece of code. When an exceptional condition arises, an iject

s presenting that exception is created and thrown in the method that caused the error. -

shat method may choose to handle rt_he__exggpggg_i_tsglf,-.oLpassiLon. Either wa at_'r-
et L P

]S_gggwﬂle exception is caught and processed. Exceptions can be generated by the
neratéd by your code. Exceptions

i

itin some rational manner g entlg e)_(cap_‘_'_tibn (using catch) and handle

stem-generat d
the Java run-tim _YSem-generated exce frons are i ;
Any xccption 0t & Mo ot o oelbO% SLEXCePHON, G55 e eyt o
o r - T .
clause. Any code that abg 2 method mus be ﬁem%ws

1
_a finally block, iolutely must be executed before’

a method feturns is put in

Lphon—handling block: ‘

// block of i
] code to monitor for errorg / k

cat;}; (ExceptionTypﬂ exOb) {
exception hand '
] ndler for ExcepnonTypel

cah/:h (Exceph'on'rypez‘ exOb) | [V/
/ exception hand]
| er for Exf.l'eption

Type2
// "

Scanned with CamScanner

.-.-,........-.
‘ Ay
1t Mty

“'llllter 10; [,“puon-ﬂandlins "‘;

\
finally |

/7 block of code +
| of code tq b@(;

-

Xecuteq |y,

fore
ore try block ends

Here, Exce ionType g the type [
chapter describes how 1o “Pply(:| SXCCPHon g
h

is framew oy has occurreg. 'I;w remainder Of*}’is (' M
S - t waﬁ &
_| Exception Typeg

f\ll tc’:;cettmn ft lves are subclaggeg of the bujl.; ly fuiv'lﬂtto (f@wW
is at the top of the exception classhier uilt-in clags T rowable. THus, Throwable
§'chlasses that partition EXceptions ,n:;_chlcnmediatcly below Throwable are t:lvczl
Exception. This class is O distinct branches. One branch is heade
Ly Excepli S class is uge : anches. One branch 1s he:
gatch. This is alSo the class tl:;:]—iw\m:onditions that user programs should
es. Thare is an important s Will subelass to create your own custom exception

: ubclas .
xceptionsof this : ass of Exception; imeException. X

‘ : . matically defined for the programs that you write
and include things such as division by zero and invalid aprm)g, Serdeadting

s The other branch is topped b E : _
/tg be caught under normal circu oK, which defines exceptions that are not Cxpecteg
. _ mstances by your program. Exceptions of type Error
are psed by th'e Java run-time System to indicate errors having to do with the run-time
environment, itself, Stack overflow is an example of such an errorJThis chapter will
not be dealing with exceptions of type Error, because these are typically created in
response to catastrophic failures that cannot usually be handled by your program.

el

T T o5 e 2 o DI i b T T o 50 i T e 0 s e e S o e TR L

_l Uncaught Exceptlons Ao

Before you learn how to handle exceptions in yoﬁ?\ program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
Intentionally causes a divide-by-zero error.]

class Exc0 { ef/b 8-
public static void main(string argsll) { ' dex: ‘Y\E“) \\\
int @-= 03 fj
int a = 42 / d; WW-’)Q G 37W |
}
_ _ - Qs

t to divide by ' ’}’
When the -time system detects the at.temp to Z€r0, it COR3
~'en the Java run y Throws this exception. This causes the execution of Exc0

%xception object and then
twe Olnce an excepion has DeCn throw1nl .hk 7 g”,b an exception B’ld E}JJ
Ndler and dealt with immediately- In this exan:) e—i:\%- aven t supplie any exception })Ofd l
h'md-lers.g[_guf_ewn uX_C&?EEinscaug t by the default handler provigs y the i
i .__"‘_"‘-——._._,_______.___',

W | AL

Scanned with CamScanner

a

, Java™ 2: The Complete Reference

Java run-time system. Any exception that is not caught by your program will ultimate]
be processed by the default handler. The default handler displays a string describi ngy
the exception, prints a stack trace from the point at which the exception occurred, anqg

terminates the program.
Here is the output generated when this example is executed.

jaya.1angaArithmeticException: / by zero
at Exc0.main(ExcO.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4, are all included in the simple stack trace. Also, notice that the
type of the exception thrown is a subclass of Exception called ArithmeticException,
which more specifically describes what type of error happened. As discussed latér in
this chapter, Javasupplies several built-in exception types that match thevarious sorts
of run-time errors that can be generated. S v -
The stack trace will always show the sequence of method invocations thatledupto
the error. For example, here is another version of the preceding program that introduces

the same error but in a method separate from main():

Bl class Excl { - . s

hstatic vqid sgprgutine() { _
. o -
int a = 10 /' 4d;

}
public static void main(String args[]) {

Excl.subroutine() ;
}

The resulting stack trace from the default exception handler shows how the entire
call stack is displayed:

java..lang.ArithrneticException: / by zero
at’ Excl.subroutine (Excl.java:4)
at Excl.main(Excl.java:7)

) ¥
)

m of the stack is main’s line 7, which is the call to
the exception at line 4. The call stack is quite useful for
nts the precise sequence of steps that led to the error-

. Asyou caln.see, the botto
" subroutine(), which caused
debugging, because it pinpol

g

Scanned with CamScanner

Uhapter 10: Exception man® "

/U;frfg— try and catch. —

: though the glefault exception hap, i om is useful

 cbagEng, you will usuall N ¢ Java run-time systell = ——
&vi_des two benefits. First, it allo:\l;};t)l;zll:?ncf”e an exception yourself. Doln l(:
‘ : 0 fix : : ts the

am from automatically ¥ermin; g Most the error: Second, it prgj__e__?___;; the
Jeast) if your program stopped rungs e A e ponipeee 17 T

«ccurred! Fortunately, it is quite eqg 1'8 and printed a stack trace whenever an error

. t i
To guard against and handle 4 r)’ O prevent this,

un-tj :
: nitor inside a try block.] iime error, simply enclose the code that you

| 7 ——a_'Mediately following the try block, include a catch
dutp hal SpecLies e Sxccption type that you wish to cﬁ tch, To illustrate how easily

this can beﬂfoief_:;‘e fo]}ogving Program includes a try block and a catch clause which
¢ ArithmeticException generated by the division-by-zero error:

3
p= .
g
class Exc2 { _ watley 6\

public static void main(String args[]) {

int &, &;
try { // monitor a block of code. ﬁ
d = 0; ,le—g
a =42 / d4; &Q/
System.out.println("This will not be printed."); 9

} catch (ArithmeticException e) { // catch divide-by-zero error U&ofio
System.out .println("Division by zero.");

}

System.out.println("After catch statement."); ii_
} Aua

) A@%/f\%

This program generates the following output:

Division by zero. H.,__
After catch statement.
1S

No.ﬁce that the call to println() inside the try block is never executed. Once an
e’:l‘teg_hon is thrown, program control transfers out of the"try block into the catch block. 16
aqtcll.{ferenﬂy’ cateh is not “called.” s0 ex.ecuhc:’n- never ‘returns” to the try block from.

b - Thus, the line “This will not be printed.” is not displayed. Once the catch
bl 125 executed, program control continues With the next line in the prograpm

Wing the entire try/ catch mechanism. ' &

Scanned with CamScanner

nit. The scope of the catch clause is restr;
Cted

X 4 jts catch statement form a U
ts specified by the immediately preceding try statement. A catch
another try,statement (exdept in the

those stateme .
w ot catch an €x¢
ted shortly). The statements that are protected b |
y

ent €a

S;ifg} ne t statements, descrlbed

mustb urr unded by curly braces. (That is, they must be within a block.) You

i tatement.
ot use try ond single s X i

o e goal of most well-constructed catch clauses should be to resolve the
exceptional :tion and then continue on as if the error had never happened.
For example, the next program each iteration of the for loop obtains two random
integers- Those tWO integers are divided by each other, and the result is used to divide
the value 1 345. The final result is put into a- If either division operation causes a
divide-by-zero error, it 1 caught, the value of a is set to zero, and the program '
continues- ' 3

an exception aridl move Sl

/! gandle
a.util.Random;

import jav

class HandleError {

public static void main [l 4
int a=0, b=0, c=0;
random I = new random () 7

(string args

for (int 1=07 1<32000; iv+) |

try {
b = r.nextInt ();
Cc = r.nextInt();
& = 12345 [(b/c):
} catch (ArithmeticException e} {
System.out.println("Division by zero.")i
a = 0z /7 BEL @ te zero and continuée

}

System.out.println("a: "+ ali

Dlsﬂitxiﬁ zepgscri ption of an Exception
Ir 2l :
tring containi gla gse;l;fi t‘:is’h'mg() method (defined by Object) so that it returns @
intln() statement by - Il:l (lm of the exception. You can display this description in
ply passing the exception as an argument. For examp!€”

catch blockin t i
he preceding program can be rewritten like this:

Scanned with CamScanner

Chapte, 10 Exception Wandling |
catch (ArithmetiCExC

N SIS
SYStem-OUt-Drintln(--EXC; ‘3)
Bu=i 0 /7. set a to ZGrO'Dtlohz .
V.. n '
) d

When this version jg Substj ed in the
divide-by-zero error displayg the f()llow‘u- Program,

and the program is run, each
Ing mussnge

Exception:

/ by zero
Particular

¥ alue in thjg
of an exception is valuab]e in ot o
experimenting with exceptiong

|Multiple catch Clayggs

Insome cases, more than Oone €Xception could be raised by a single piece of code. To
handle this type of sity

ation, you can Specify two or more
adifferent type of exception. Wh i
inspected in order, and the first

executed. After one catch
continues after the try/ca

tch block. The follo
&xception types: '

!/ Demonstrate multiple catch Statements.
classg MultiCatch {

Public static void main(String args[]) (
try {
int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int ¢f) = (1 };
cl42] = 99;
} catch(arithmeticException e) { “
System.out .println("Divide by 0: ik @)y
} catch(ArrayIndexoutOfBoundéExcept1on ?) {
System.out .println("Array index oob; + e);
}

System. out println("After try/catch blocks, »)

Scanned with CamScanner

ava™ 2: The Complete Reference

ion if it is started with no commapg_
<o kg -eroexcep’ﬂomfl P s ;
se dmslloﬂ :33’ ?t will survive the division lf.you- provide 5
ill equal zero. ething larger than zero. But it will cause 4,
a length of 1, yet the

This program will cau
i ince aw
line parameters, SInc el
i ument, setting . . o
Comminc?ezgi?(r)ngoundsException, since the int array
n ip .
A:;a¥am attempts to assign a value to c[4.2] VAT W
g %{ere is the output generated by running

C:\>java MultiCatch
a=0.

Divide by O:
After try/catch blocks.

java.lang.ArithmeticException: / by zero

C:\>java MultiCatch TestArg

=1 '
eray index oob: java.lang.ArraylndexOutOfBoundsExcept1on
After try/catch blocks.

When you use multiple catch statements, it is %mportant to remer_nl?gr that
exception subclasses must come before any of their superclasses. This is because a
catch statement that uses a superclass will catch exceptions of that type plus any of
its subclasses. Thus, a subclass would never be reached if it came after its superclass.
Further, in Java, unreachable code is an error. For example, consider the following
program:

/* This program contains an error.

A subclass must come before its superclass in
a series of catch statements. If not,
unreachable code will be created and a
compile-time error will result.
*f
class SuperSubCatch {
public static void main(
try {
int a = 0;
int b = 42 / a;
} catch(Exception e) {

System.out.println("Generic EXception catch.;):
}

String args[]) ({

/* This catch is never reached because
ArithmeticException is a subcl
catch(ArithmeticException e)
System.out.println(®

ass of Exception.J*K

{ // ERROR - unreachable
This is never reached.");

Scanned with CamScanner

~ 'Y+ txception Hanoling gmm

a:-‘\'!u tf:\- to mmpile this pmgram
| g:eft\“}i calthtstatentent is um‘?a(‘h;liw?u Will recejye an error message stating that
| geht. Smce ‘mmmehCE‘cepﬁon is . bec““Se the exception has already been
j -{mﬂeaﬂ E\‘ception-based el‘mrqa N ubd“_SS of Exception, the ;i}s‘t ca‘tcl'{ statement
| “&esemnd catch statement will [;e-:“ﬂudmg A!'ithmeticExcepticm. This means
r of the catch statements, €T eXecute. To fix the problem, reverse the

v.“

try Statements

:&ES::_ Ea chtggnlet:t?:b_ted' That 1S, a try statement can be inside the block of
. e statement is entered, the context of that exception is

:ﬁfd on the Stad\ If an inner try statement does not have a catch handler for a
mhr exception, the stack is unwound and the next try statement’s catch handlers
= mspected for a match. This continues until one of the catch statements succeeds, or
== zll of the nested try statements are exhausted. If no catch statement matches, then
%eJava run-time system will handle the exception. Here is an example that uses

==d try statements:

1ine args are presentc,

1
statement will generate

lo!
the following
cion.

* f
a divide-by-zero €Xcep /

Int b = 42 / a;

o™ - L] = " T a, H
System.out .println(”a ;

try { // nested try block

i is used,
/* T% one command-11ine arg ;
ide_by-zero exception
py the following code. */

// division by zero

then a div
will be generated
iftaz=a) a'= a/(a-ali

Scanned with CamScanner

ence
-hu“' 2: The Complete Refer

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2) {
int c[] = (1} _
c[42] = 99; // generate an out-of-bounds exception
} | .
)} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out-of-bounds: " 4 e);

}

} catch(ArithmeticException e) ({
System.out.println("Divide by 0: " + e);

}

As you can see, this program nests one try block within another. The program
works as follows. When you execute the program with no command-line arguments, a
divide-by-zero exception is generated by the outer try block. Execution of the program
by one command-line argument generates a divide-by-zero exception from within the
nested try block. Since the inner block does not catch this exception, it is passed on
to the outer try block, where it is handled. If you execute the program with two
command-line arguments, an array boundary exception is generated from within
the inner try block. Here are sample runs that illustrate each case:

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One
a = 1

Divide by 0, java.lang.ArithmeticException: / by zero

C:\>java NestTry One Two
B 2

Array index out-of ~bounds ;
Java, lang, ArraYIndexOutOfBoundsExcept ion

Nesting of
B led Igor etg ;taltements can occur in less obvious ways when method calls ar®
that method ig anotﬁ € You can enclose a cal] to 4 method within a try block. Inside
nested inside the out?az :"Y statement: In this case, the try within the method is still
recoded so that the nest fc)l’ block, which calls the method. Here is the previous prog

€d try block is moved inside the method nesttry():

rat

Scanned with CamScanner

Chapter 10: Exceptio

\

/¥ Try statements can pe implies ;
calls to methods., #*/ PHGitly nested via

class MethNestTry {
static void nesttry (int a) { ' -
try { // nested try block
/* If one command-1ine arg is used
then a divide-by-zerg exception'
will be generated by the following code. */
Af(a==1) a = a/(a-a);,// division by zero

/* If two command-line args are used,
then generate an out-of-bounds exception. */

if(a==2) {
e €[] = 12);
c[42] = 99; // generate an out-of-bounds exception

ety
} catch(ArrayIndexOutOfBoundsException e) {

‘Bystem.out.println("Array index out-of-bounds:

b " ooe):
3 +5h

public static void main(String args(]) {

‘try {
. int a = args.length;

‘/* If no command—line args are present,

the following statement will generate
a divide-by-zero exception. */
int b = 42 / a;
System.out .println("a = + a);

nesttry(a); .) {
} c.atch(zwitmnetJ'LcExCep'.:lc.)n y 0: * + e);
System. - println { uDJ_Vlde bY : JI

The output of this program is identical to that of the preceding example,

Scanned with CamScanner

T -

S . i

| thro |

r, you y i i l at are thrO n by the la a]un..
lla ve 01 ll been CatChlng excephons t | lt 1 A%Y v
SOEa ’ t

time
e : to throw an exception explici
vever, it is possible for your program : ; Y,
Sys.\'temti}:%r?w statement. The general form of throw is shown here: e
using

Pﬂ")‘.‘

row ThrowableInstance;

MWMQHCC must be an object of ty

pe Throwable or a subclass of
.Simple types, such as int or char, as w
’[hrowable

Mﬂiﬂm—%
ing and Object, cannot be used as exceptions. There are two Ways you can obtaj,
as_rsht:‘o:‘fabl e object: using a parameter into a catch clause, or creating one with the new
a b,

operator.

The flow of execution stops immediately after the throw statement;
statements are not executed. The nearest enclosing

try block is inspected to see if jt has
a catch statement that matches the type of the exception. If it does find a match, contrgj
is transferred to that statement. If not, then the next enclosing try statement is
inspected, and so on. If no matching catch is found, then the default exception handler
halts the program and prints the stack trace.
Here is a sample program that creates a
catches the exception rethrows it to the out

any subsequent

nd throws an exception. The handler that -
er handler.

// Demonstrate throw.
class ThrowDemo {

static voig demoproc() {
try {

terExcept ion e) {

- 7 "Caught inside demoproc. ") ;
: ; Fethrow tye €Xception
}

demoprOC() {
czzct:l;r:lm;iipmnterExce Lion g) {

: “PREprintln o SCaught; » e)

| ;

Scanned with CamScanner

4

4 ',.

Cha .
10: Exception Handling ”’ :

. program gets two chanceg ¢,

P deal v;
aception Contt?’(t al‘?d (tihfi‘l’l calls demu[Vith the Same g,

et exception-tandling congey , B¢ emopy.. TS main() sets up an
Hg“pomterExcephon, Which js ¢, i Oproc(

: ediately 4) method then sets up
an. Here 15 the l'eSUIting 0ul_put: n the Next linhTOWS a new instance of

e * H1l€ exception is then
caught inside demoproc

gecaught : java.lang_Nullpoi :
Nterg

i XCeptian.
The program also illustrates 1, btion: demo

payclose attention to this line:

ate One
' of Java’s standard exception objects.

l throw new NullPointerEXCEption("d
emo")

r

ﬁthrows

w is capable of causing an exception that it does not handle, it must specify
R tl:ilsor St:" th _allersrﬁf the method. can guard themselves against that exception.
Etsth\b}l%dmg a throws clause in the method’s declaration. A throws clause
~ " lypes of exceptions that a method might throw, This is necessary for all -
Al ons, except those of type Error or RuntimeException, or any of their subclasses.

€T exceptions that a method can throw must be declared in the throws clause. If

Yar.e Not, a compile-time error will result.
Isthe general form of a method declaration that includes a throws clause:

’lype Method-name(parameter-list) throws exception-list

//Body of method
He

e, : . :
exCePtIOn-Ii Sis a comma-sepal‘ated list of the exceptions that a methog can throw.

|

:{ .

[}

|

|

'. ¥

Scanned with CamScanner

java™ 2: The Complete Reference

n example of an incorrect program that tries to throw an except
tch. Because the program does not specify a throws clause (o c|tl(m

am will not compile.

Following is a
that it does not ca
this fact, the progt

// This program contains an error and will not compile,
class ThrowsDemo {
rowone () {

tac void th
rintln("Inside t hrowOne.") ;

sta
gyst em.out.p
throw new IllegalAccesslﬂxception("demo"};

}
public sta
throwone 13

tic void main(string args([]) |

}

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try/catch statement that catches this exception.

The corrected example is shown here:

7/ This is now correct.

class ThrowsDemo {
static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne. "3 G-
throw new IllegalAccessException("demo") 77 :
}
public static void main(String argsl[]) {
tow 1 N
throwOne() ;

}
catch (IllegalAccessException e) {

S .
} YStem.out.println("Caught " + e);

Here s the

Uutput
O tp generated by running this example program!
inside throyope

caught jays
: .lan _

Scanned with CamScanner

' none without execu ting

.,"—-- s

2 Chapter 10: Exceptio”
=)

et

S

JWWS' execution in a method takes a 12 ther ab
Bt a fors the r:uorma ow.through the method. Depending upon

i it is even possible for an exception to cause the method € retw™l
1d be a pI’Oblem in some methods. F ifa method
and closes it upon exit, then y ou Wlll no C h

ssed by the exception-handlin
d to address this contingency-

odCd;
_This cou

pre™ " gile upon entry

creates @ plock of
d before t

te whether or _
g “;ku 1 execute even if no

od is about to return to
ion or an exP

thod returns- This can

of them

4 ore js an example Progt
their

// DemoO

he code following the
not an exception is thrown.

licit return s

ht have been allocated at the peginning of 2 m
pefore returning. The fin optional. However,

: o5 at least one catc
am th

/ A .',‘J..){j
rupt,

or examp e,
t wan the ¢
The

g mechanism-

code that will be executed after 2 gry/ cateh plock

try/catch block. The ginall

If an exception 15 :
tion. AnY time

catch statement matches the excep
the caller from inside a try/catch block, via an
is also executed)

tatement, the finally clause 15 @ _
file handles and freeing up atl.
thod with the intent

be useful for closing
ally clause i each try

h or a finally clause.
at shows three methods

finally clauses:

that exit in various wayss

nstrate finally-

class FinallyDe

mo |

a
] [}
{

‘

i on out of the

"‘j‘

LA

f // Through an excepti

-‘}-E.s.ta{:’ié void procA ()

{

* .
oy
e SYStern.out.println{"inside procA®) i
‘throw new RuntimeException("demo") ;
) finally {
finally“);

. System.out .prin
}

3

// Return from withi
static void procB()
try {
System.out
return;
} finally {

.print

tln("prOCA'S

n a t¥y plock.-
{

1n("inside procB") i

— T e

Scanned with CamScanner

o, ey 'lefefen¢e
java™ 1 The Complete

gystem out.println(“procB s finally");
NN g g ‘
i gxecute ‘@ try plock normally.
/ o t .
statlc void procCF) { il
tréy;teﬁ but pfiﬁtln(“inside procC)‘
: ally {° . &
it tln("procC's finally");

. gystem. out. prln
Frgk
Pl

bubllc static void main(String args([]) {

_procA();

} catch {Exceptlon e) {
System.out. println("Exception caught"”),

T
:u. procB() ;
'procC();
arsi)
3
| In thls example, procA() prematurely breaks out of the try by throwmg an
excephon The finally clause is executed on the way out. procB()’s try statement is

exited via a return statement. The finally clause is executed before procB() returns.In
procC(), the try statement executes normally, without error. However, the finally

block 1s still executed.

If a finally block is associ : . ‘ _
M’ c{méus,-oj’ Off,‘jf ;f;ss"““fed with a try, the finally block will be execufed upon

Here is the output generated by the preceding program:

inside proca
procA S flnally

" Exception caught
inside procB
procB’s finally

‘inside procC
procC’s finally

Scanned with CamScanner

Chapter 10: Exception Handling

. g itllg,ljav M i "
used by the p receding GXample; %ﬁfmes several exception classes. A few

ha .
subclasses of the standard type Rungj € Most general of these exceptions

d into all Java programs, mqgt b% MeException, Since java.lang is implicitly
C€ptions derived from RuntimeException

ed exceptions defined in java lar -
llndlet(i:l;ns deﬁnped by]'aVa.lii mtf\ava'lang are listed in Table 10-1. Table 10-2 lists those
exC;_.Pod can generate one of theg " must be included in a method’s throws list if that
gled checked exceptions. Java des?ﬁnexcep tions and does not handle it itself. These aré.
' €S seve . :
ious class ﬁbraries. g . ral other types of exceptions that relate to.lts |

E&M Meaning
ArithmeticException Arithmetic error, such as
B divide-by-zero. _
ArrayIndexOutOfBoundsException Array index is out-of-bounds. _
ArrayStoreException | Assignment to an array element ofan
incompatible type. ,
ClassCastException Invalid cast. -
llegalArgumentException [llegal argument used to invoke a
FYiaN : ' method. -
lle aleu t tion ‘ Illegal monitor operation, such as
: forSta EE)_(CEP : waiting on an unlocked thread.
legalStateException .. Environment or application is in
; - P : ~ incorrect state. _
Ille Ik) : i Requested operation not compatible
galmeadStateExceptlon ~ with current thread state.
[“de@bﬂ;ounds‘ﬁxception . Some type of index is out-of-bounds.
e _ created with a negative size.
NegahVeArraySizeExcephon Array BAKIVE size

Scanned with CamScanner

' Java™ 2: The Complete Reference

Exception

NullPoin terException
NumberFormatException

SecurityException
StringIndexOutOfBounds

UnsupportedOperationException

q & =
{ f

gk Attempt to index outsj

Invalid use of a null reference,

Invalid conversion of a stri

ngtoa
numeric format,

Attempt to violate security.

de the boundg ﬁf
a string,

An unsupported Operation wag
encountered.

Exception
ClassNotFoundException
CloneN otSupportedException

megalACCessExcepﬁon
II‘Lé‘-timﬁationExceptia.n

InterruptedExceptio,

NoSuchFieldException
NoSuchMemodExcep'tion

Meaning
Class not found.

Attempt to clone an object that does not
implement the Cloneable interface.

Access to a class is denied.

Attempt to create an object of an
abstract class or interface.

One thread has been interrupted by
another thread.

A requested field does not exist.

A requested method does not exist.

Scanned with CamScanner

Exception (which is, of course, a5
i : ctually implement anything—it 5
B m;ﬁi:si,s:ie;:stgatt ZHO.WS you to use th};m ais); excigiilr;ys. :

P ot define any methods of its own. It does, of course-

it those mel:hOdSt Eéovic:lt:ddby Th_rowable, Thus, all exceptions, including those
o create, : S\I;e NOh{ne tho s defined by Throwable available to them. They 27 -
in Table 10-9. ce that several methods were added by Java 2, version 1.4

their

Chapter 10: greeption Hand!i®®

ubclass

Youmay also wish to override one or more of these methods in exception classes that
quareatt.
¥ R e
Method ' Description
Throwable fillInStackTrace() Returns a Throwable object that contains
a completed stack trace. This object can be
} rethrown.
Throwable getCause() Returns the exception that underlies the
current exception. If there is no underlying
exception, null is returned. Added by Java 2,
& version 1.4.
String getLocalizedMessage() Returns a localized description of the
exception.
Stfinggeﬂ\dessage() Returns a description of the exception.

Returns an array that contains the stack
trace, one element at a time as an array of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method
is found in the first element of the array.
The StackTraceElement class gives your
rogram access to information about each
element in the trace, such as its method
name. Added by Java 2, version 1.4

StackTraceElement][] getStackTrace()

Throngpye initCause(Throwable Associates causeExc with the invoking
s exception as a cause of the invoking excepti
:) Returns a reference to the exceptign ieg:ilgcril ‘

by Java 2, version 1.4

:
i
o
Sr iy

2
= m = :

.

. B

~ Java™ 2: The Complete Reference

——

Method Description
void printStackTrace() Displays the stack trace.
void printStackTrace(PrintStream Sends the stack trace to the specified stroay
stream) o)
void printStackTrace(PrintWriter " Sends the stack trace to the specified -
stream) :
void setStackTrace(StackTraceElement Sets the stack trace to the elements passed
elements| 1) in elements. This method is for specialized
applications, not normal use. Added by Java?
version 1.4 i ’

String toString() Returns a String object containing a

description of the exception. This method

is called by println() when outputtinga .
Throwable object.

The following example declares a new subclass of Exception and then uses that
subclass to signal an error condition in a method. It overrides the toString() method,
allowing the description of the exception to be displayed using println().

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;

MyException(int a) {
detail = a;
}

public String LoString() {

return "MyException[" 4 detail + "]";

}

class ExceptionDeno {
static ~oid compute (int a) 't

hrows MyException {
System.out.println(w

Called compute(" + a +.")");

Scanned with CamScanner

dli“g

fon
Chapter 10: greent!?

¢ hrow new MyException(a);

gystenm out.printin("Normal exit");
ystem.

}
plic ctatic void main(String args(]) f{
pub
try {
Compute(l) h
Compute(20) h
} catch (MyException e) {

.

system.out.prlntln("Caught "o+ oe);

2 . tion. Thi
This example defines a subclass of Exception calltled l;?f::setpring() method that
a

. e it has only a constructor plus an OVerio ofine
squite AP .on. The ExceptionDemo class _

¢ alue of the exception. 1he ption s
djspgi;hnfp‘;te() that throws a MyException object. The' eﬁenligtiod sets up an
e ite()’s integer parameter is greater than 10. The main th a legal value (less
mmplt:;on handler for MyException, then calls compute() Wld Hore is the res ult:
:anmpm) and an illegal one to show both paths through the code.

called compute (1)
Normal exit

called compute (20)
Caught MyException[20]

;I Chained' Ex*c:ﬁﬁons

Java2, version 1.4 added a new feature to the exlception subsysten}: chai.ned exception_s.
The chained exception feature allows you to associate another exception with an exception.
This second exception describes the cause f)f the flrst exception. For example, imagine a
situation in which a method throws an ArithmeticException because of an attempt to
divide by zero. However, the actual cause of the problem was that an | /O error occurred
which caused the divisor to be set improperly. Although the method must certainly throw ’
an ArithmeticException, since that is the error that occurred, you might alsq want to Jet
the calling code know that the underlying cause was an I/O error, Chained e o
let you handle this, and any other situation in which layers of exceptions ex; Xceptions
To allow chained exceptions, Java 2, version 1.4 added two Consbe Xist,
methods to Throwable. The constructors are shown here, ctors and two

Throwable(Throwable causeExc)
Throwable(String msg, Throwable ca useExc)

Scanned with CamScanner

s s

i

4

Java™ 2: The Complete Reference

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second for.m allows
you to specify a description at the same time that you specify a cause EXCffPth- These
two constructors have also been added to the Error, Exception, and RuntimeException
classes. .

The chained exception methods added to Throwable are getCa use() and initCause(),
These methods are shown in Table 10-3, and are repeated here for the sake of discussion,

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current excepti.on,
If there is no underlying exception, null is returned. The initCause() metl‘god associates
causeExc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can'’t set it again using initCause().

In general, initCause() is used to set a cause for legacy exception classes which
don’t support the two additional constructors described earlier. At the time of this
writing, most of Java’s built-in exceptions, such as ArithmeticException, do not define
the additional constructors. Thus, you will use initCause() if you need to add an
exception chain to these exceptions. When creating your own exception classes you
will want to add the two chained-exception constructors if you will be using your
exceptions in situations in which layered exceptions are possible.

Here is an example that illustrates the mechanics of handling chained exceptions.

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {
// create an exception
NullPointerException e =
new NullPointerException("top layer");

// add a cause
e.initCause(new ArithmeticException("cause")):

throw e;

public static void main(String args[]) {

try {
demoproc () ;

Scanned with CamScanner

} catch(Nullpg inLanxL
- RXCept ;

// display top leve DtHnl(q

{
CXep
System.out.print.ln("c .

*Pl i on
aughy .

et

The output from the Program is show

n here,
Caught: java.lang.NullPointerException. top layer
Original cause:]a\ra.1ang.ArithmeticException: cause

In this example, the top-leve] exce
acause exception, ArithmeticExce
demoproc(), it is caught by
followed by the underlying

Chained exceptions can
cause exception can, itself,
may indicate poor design.

Chained exceptions are not something that every program will need. However, in
@ses in which knowledge of an underlying cause is useful, they offer

ption is NullPointerException. To it is added
Ption. When the exception is thrown out of
main(). There, the top-level exception is displayed,
exception, which is obtained by calling getCause().

be carried on to whatever depth is necessary. Thus, the
have a cause. Be aware that overly long chains of exceptions

an elegant solution.

Seas R N T— N—

F- : =
< Using Exceptions
XCeption handling provides a powerful mechanism- for controlling complex programs
that haye Mmany dynamic run-time characteristics. It is important to think of try, throw,
ad catch 4 clean ways to handle errors and unusual boundary conditions in your
Program’s | ogic. If you are like most programmers, then you probably are used to
returnjng an error code when a method fails. When you are Programming in Java,
Sl;ou]d break this habit. When a method can fail, have it throw an exception. Thyjs j
c -
" Way to handle failure modes.
¢ last poing. Tava's excepﬁon-handlmg statements s.hm.nld not be Considered 5
ey Mechanism for nonlocal branching. If you do so, it will only contuse your code
€it hard to maintain.

you
Sa

Scanned with CamScanner

